SS-31 Peptide Guide – Benefits, Dosage, Side Effects

Muscle Insider

New member
ss-31-peptide-01.jpg


1)Nashine, S. (2021). Potential Therapeutic Candidates for Age-Related Macular Degeneration (AMD). Cells, 10(9), 2483. https://doi.org/10.3390/cells10092483


2)Zhao, K., Zhao, G., Wu, D., Soong, Y., Birk, A. V., Schiller, P. W., & Szeto, H. H. (2004). Cell-permeable Peptide Antioxidants Targeted to Inner Mitochondrial Membrane inhibit Mitochondrial Swelling, Oxidative Cell Death, and Reperfusion Injury. Journal of Biological Chemistry, 279(33), 34682–34690. https://doi.org/10.1074/jbc.m402999200


3)Siegel, M. A., Kruse, S. E., Percival, J. M., Goh, J., White, C. L., Hopkins, H., Kavanagh, T. J., Szeto, H. H., Rabinovitch, P. S., & Marcinek, D. J. (2013). Mitochondrial-targeted peptide rapidly improves mitochondrial energetics and skeletal muscle performance in aged mice. Aging Cell, 12(5), 763–771. https://doi.org/10.1111/acel.12102


4)Birk, A. V., Chao, W., Bracken, C., Warren, J. D., & Szeto, H. H. (2014). Targeting mitochondrial cardiolipin and the cytochromec/cardiolipin complex to promote electron transport and optimize mitochondrial ATP synthesis. British Journal of Pharmacology, 171(8), 2017–2028. https://doi.org/10.1111/bph.12468


5)Szeto, H. H., & Liu, S. (2018). Cardiolipin-targeted peptides rejuvenate mitochondrial function, remodel mitochondria, and promote tissue regeneration during aging. Archives of Biochemistry and Biophysics, 660, 137–148. https://doi.org/10.1016/j.abb.2018.10.013


6)Zhang, H., Alder, N. N., Wang, W., Szeto, H. H., Marcinek, D. J., & Rabinovitch, P. S. (2020). Reduction of elevated proton leak rejuvenates mitochondria in the aged cardiomyocyte. eLife, 9. https://doi.org/10.7554/elife.60827


7)Sabbah, H. N. (2021). Barth syndrome cardiomyopathy: targeting the mitochondria with elamipretide. Heart Failure Reviews, 26(2), 237–253. https://doi.org/10.1007/s10741-020-10031-3


8)Thomas, D., Stauffer, C. A., Zhao, K., Yang, H. G., Sharma, V., Szeto, H. H., & Suthanthiran, M. (2007). Mitochondrial Targeting with Antioxidant Peptide SS-31 Prevents Mitochondrial Depolarization, Reduces Islet Cell Apoptosis, Increases Islet Cell Yield, and Improves Posttransplantation Function. Journal of the American Society of Nephrology, 18(1), 213–222. https://doi.org/10.1681/asn.2006080825


9)Tarantini, S., Valcarcel-Ares, N. M., Yabluchanskiy, A., Fulop, G. F., Hertelendy, P., Gautam, T., Farkas, E., Perz, A., Rabinovitch, P. S., Sonntag, W. E., Csiszar, A., & Ungvari, Z. (2018). Treatment with the mitochondrial-targeted antioxidant peptide SS-31 rescues neurovascular coupling responses and cerebrovascular endothelial function and improves cognition in aged mice. Aging Cell, 17(2), e12731. https://doi.org/10.1111/acel.12731


10)Reddy, P. H., Manczak, M., Yin, X., & Reddy, A. P. (2018). Synergistic Protective Effects of Mitochondrial Division Inhibitor 1 and Mitochondria-Targeted Small Peptide SS31 in Alzheimer’s Disease. Journal of Alzheimer’s Disease, 62(4), 1549–1565. https://doi.org/10.3233/jad-170988


11)Birk, A. V., Liu, S., Soong, Y., Mills, W. C., Singh, P. K., Warren, J. D., Seshan, S. V., Pardee, J. D., & Szeto, H. H. (2013). The Mitochondrial-Targeted Compound SS-31 Re-Energizes Ischemic Mitochondria by Interacting with Cardiolipin. Journal of the American Society of Nephrology, 24(8), 1250–1261. https://doi.org/10.1681/asn.2012121216


12)Petri, S., Kiaei, M., Damiano, M., Hiller, A., Wille, E., Manfredi, G., Calingasan, N. Y., Szeto, H. H., & Beal, M. F. (2006). Cell-permeable peptide antioxidants as a novel therapeutic approach in a mouse model of amyotrophic lateral sclerosis. Journal of Neurochemistry, 98(4), 1141–1148. https://doi.org/10.1111/j.1471-4159.2006.04018.x





1)Nashine, S. (2021). Potential Therapeutic Candidates for Age-Related Macular Degeneration (AMD). Cells, 10(9), 2483. https://doi.org/10.3390/cells10092483


2)Zhao, K., Zhao, G., Wu, D., Soong, Y., Birk, A. V., Schiller, P. W., & Szeto, H. H. (2004). Cell-permeable Peptide Antioxidants Targeted to Inner Mitochondrial Membrane inhibit Mitochondrial Swelling, Oxidative Cell Death, and Reperfusion Injury. Journal of Biological Chemistry, 279(33), 34682–34690. https://doi.org/10.1074/jbc.m402999200


3)Siegel, M. A., Kruse, S. E., Percival, J. M., Goh, J., White, C. L., Hopkins, H., Kavanagh, T. J., Szeto, H. H., Rabinovitch, P. S., & Marcinek, D. J. (2013). Mitochondrial-targeted peptide rapidly improves mitochondrial energetics and skeletal muscle performance in aged mice. Aging Cell, 12(5), 763–771. https://doi.org/10.1111/acel.12102


4)Birk, A. V., Chao, W., Bracken, C., Warren, J. D., & Szeto, H. H. (2014). Targeting mitochondrial cardiolipin and the cytochromec/cardiolipin complex to promote electron transport and optimize mitochondrial ATP synthesis. British Journal of Pharmacology, 171(8), 2017–2028. https://doi.org/10.1111/bph.12468


5)Szeto, H. H., & Liu, S. (2018). Cardiolipin-targeted peptides rejuvenate mitochondrial function, remodel mitochondria, and promote tissue regeneration during aging. Archives of Biochemistry and Biophysics, 660, 137–148. https://doi.org/10.1016/j.abb.2018.10.013


6)Zhang, H., Alder, N. N., Wang, W., Szeto, H. H., Marcinek, D. J., & Rabinovitch, P. S. (2020). Reduction of elevated proton leak rejuvenates mitochondria in the aged cardiomyocyte. eLife, 9. https://doi.org/10.7554/elife.60827


7)Sabbah, H. N. (2021). Barth syndrome cardiomyopathy: targeting the mitochondria with elamipretide. Heart Failure Reviews, 26(2), 237–253. https://doi.org/10.1007/s10741-020-10031-3


8)Thomas, D., Stauffer, C. A., Zhao, K., Yang, H. G., Sharma, V., Szeto, H. H., & Suthanthiran, M. (2007). Mitochondrial Targeting with Antioxidant Peptide SS-31 Prevents Mitochondrial Depolarization, Reduces Islet Cell Apoptosis, Increases Islet Cell Yield, and Improves Posttransplantation Function. Journal of the American Society of Nephrology, 18(1), 213–222. https://doi.org/10.1681/asn.2006080825


9)Tarantini, S., Valcarcel-Ares, N. M., Yabluchanskiy, A., Fulop, G. F., Hertelendy, P., Gautam, T., Farkas, E., Perz, A., Rabinovitch, P. S., Sonntag, W. E., Csiszar, A., & Ungvari, Z. (2018). Treatment with the mitochondrial-targeted antioxidant peptide SS-31 rescues neurovascular coupling responses and cerebrovascular endothelial function and improves cognition in aged mice. Aging Cell, 17(2), e12731. https://doi.org/10.1111/acel.12731


10)Reddy, P. H., Manczak, M., Yin, X., & Reddy, A. P. (2018). Synergistic Protective Effects of Mitochondrial Division Inhibitor 1 and Mitochondria-Targeted Small Peptide SS31 in Alzheimer’s Disease. Journal of Alzheimer’s Disease, 62(4), 1549–1565. https://doi.org/10.3233/jad-170988


11)Birk, A. V., Liu, S., Soong, Y., Mills, W. C., Singh, P. K., Warren, J. D., Seshan, S. V., Pardee, J. D., & Szeto, H. H. (2013). The Mitochondrial-Targeted Compound SS-31 Re-Energizes Ischemic Mitochondria by Interacting with Cardiolipin. Journal of the American Society of Nephrology, 24(8), 1250–1261. https://doi.org/10.1681/asn.2012121216


12)Petri, S., Kiaei, M., Damiano, M., Hiller, A., Wille, E., Manfredi, G., Calingasan, N. Y., Szeto, H. H., & Beal, M. F. (2006). Cell-permeable peptide antioxidants as a novel therapeutic approach in a mouse model of amyotrophic lateral sclerosis. Journal of Neurochemistry, 98(4), 1141–1148. https://doi.org/10.1111/j.1471-4159.2006.04018.x






Click here to view the article.
 
Back
Top